

DOI:10.1111/j.1476-5381.2010.00854.x www.brjpharmacol.org

Republished from Br I Pharmacol (1975). 53, 435-436

CLASSIC ARTICLE

The pharmacology of cimetidine, a new histamine H₂-receptor antagonist

RW Brimblecombe, WAM Duncan, GJ Durant, CR Ganellin, ME Parsons* and JW Black¹

The Research Institute, Smith Kline & French Laboratories Limited, Welwyn Garden City, Hertfordshire

Burimamide and metiamide which have been described previously (Black, Duncan, Durant, Ganellin & Parsons, 1972; Black, Duncan, Emmett, Ganellin, Hesselbo, Parsons & Wyllie, 1973) are histamine H₂-receptor antagonists. This communication describes some aspects of the pharmacology of cimetidine (N-cyano-N'-methyl-N" [2-(5- methyl-4imidazolyl-methylthio)ethyl] guanidine; 92334), a new H₂-receptor antagonist. In vitro the compound antagonizes the actions of histamine on isolated guinea-pig atrium and isolated electricallystimulated rat uterus with K_B values of 7.9×10^{-7} M and $8.1 \times 10^{-7} \,\mathrm{M}$ respectively, corresponding to

pA₂ values of 6.1 on each tissue. At very high concentrations cimetidine antagonizes the actions of isoprenaline on atrium and uterus and the actions of histamine and carbachol on isolated guinea-pig ileum but the results are not consistent with competitive antagonism at β -adrenoceptors, histamine H₁-receptors or muscarinic receptors.

The effects of cimetidine on gastric acid secretion have been studied in a number of preparations. The results are summarized in Table 1. In all preparations cimetidine was approximately equiactive in inhibiting histamine and pentagastrin-stimulated acid secretion but less effective in inhibiting carbachol-stimulated secretion. Basal secretion was also inhibited. In Heidenhain pouch dogs the blood levels to give 50% inhibition of maximallystimulated gastric secretion (EC50)

Table 1 The effects of cimetidine on gastric acid secretion

Preparation	Stimulant	Effect of Cimetidine
Rat: Lumen-perfused stomach	Histamine 15 μ mol kg ⁻¹ h ⁻¹	ID50 (rapid i.v. injection) 1.37 μ mol/kg ID50 (intraduodenal administration) 5.5 μ mol/kg i.v. infusion of 3 μ mol kg $^{-1}$ h $^{-1}$ produced mean inhibition of 71%
	Pentagastrin 60 μ g kg ⁻¹ h ⁻¹	ID 50 (rapid i.v. injection) 1.4 μ mol/kg
	Carbachol 30 $\mu g kg^{-1} h^{-1}$	Variable effect. Significant inhibition at 8 μ mol/kg Approximately 50% inhibition at 128–256 μ mol/kg
Rat: Gastric fistula	Basal secretion	i.v. infusion of 6 μ mol kg ⁻¹ h ⁻¹ produced mean inhibition of 20% in first hour and 30% in second hour. With 60 μ mol kg ⁻¹ h ⁻¹ inhibitions were 71% and 96% respectively.
Cat: Lumen-perfused stomach	Histamine 3 μ mol kg ⁻¹ h ⁻¹	ID50 (rapid i.v. injection) 0.85 μ mol/kg
	Pentagastrin 10 μ g kg ⁻¹ h ⁻¹	ID50 (rapid i.v. injection) 1.45 μ mol/kg
Dog: Heidenhain pouch	Histamine 1.3 μ mol kg ⁻¹ h ⁻¹	ID50 (rapid i.v. injection) 1.7 μ mol/kg IE50 (i.v. infusion) 4.7 μ mol kg ⁻¹ h ⁻¹ Oral administration of 10 & 20 μ mol/kg produced mean inhibitions of 70 & 90% respectively
Dog: Heidenhain pouch	Pentagrastrin 8 μ g kg ⁻¹ h ⁻¹	$2 \mu \text{mol/kg}$ by rapid i.v. injection gave mean inhibition of 55%
	Carbachol 6.7 μg kg ⁻¹ h ⁻¹	4 μ mol/kg by rapid i.v. injection gave mean inhibition of 59%

¹Present address: Pharmacology Department, University College, London.

approximately 1–2 μ M and the half-life of the compound about one hour.

In male human volunteers cimetidine given intravenously has been shown to inhibit histamineor pentagastrin-stimulated gastric secretion with an EC50 of about 2.5 μ M and a half-life of about two hours.

In chronic toxicity studies metiamide has been shown at high doses to produce kidney damage and agranulocytosis in some dogs (Brimblecombe, Duncan & Walker, 1973). In tests so far carried out cimetidine at equivalent doses has not shown similar toxicity.

References

Black JW, Duncan WAM, Durant GJ, Ganellin CR, Parsons ME (1972). Definition and antagonism of histamine H₂-receptors. Nature (Lond) 236: 385–390.

Black JW, Duncan WAM, Emmett JC, Ganellin CR, Hesselbo T, Parsons ME, Wyllie JH (1973). Metiamide-an orally active histamine H₂-receptor antagonist. Agents and Actionis 3: 133-137.

Brimblecombe RW, Duncan WAM, Walker TF (1973). Toxicology of metiamide. In: International Symposium on Histamine H₂-Receptor Antagonists, ed. Wood CJ, Simkins MA, pp. 53–72. Welwyn Garden City: Smith Kline & French Laboratories Limited.